Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(16): e2315541121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38598341

RESUMO

Ferroptosis is an iron-dependent type of regulated cell death resulting from extensive lipid peroxidation and plays a critical role in various physiological and pathological processes. However, the regulatory mechanisms for ferroptosis sensitivity remain incompletely understood. Here, we report that homozygous deletion of Usp8 (ubiquitin-specific protease 8) in intestinal epithelial cells (IECs) leads to architectural changes in the colonic epithelium and shortens mouse lifespan accompanied by increased IEC death and signs of lipid peroxidation. However, mice with heterozygous deletion of Usp8 in IECs display normal phenotype and become resistant to azoxymethane/dextran sodium sulfate-induced colorectal tumorigenesis. Mechanistically, USP8 interacts with and deubiquitinates glutathione peroxidase 4 (GPX4), leading to GPX4 stabilization. Thus, USP8 inhibition destabilizes GPX4 and sensitizes cancer cells to ferroptosis in vitro. Notably, USP8 inhibition in combination with ferroptosis inducers retards tumor growth and enhances CD8+ T cell infiltration, which potentiates tumor response to anti-PD-1 immunotherapy in vivo. These findings uncover that USP8 counteracts ferroptosis by stabilizing GPX4 and highlight targeting USP8 as a potential therapeutic strategy to boost ferroptosis for enhancing cancer immunotherapy.


Assuntos
Ferroptose , Neoplasias , Camundongos , Animais , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Ferroptose/genética , Homozigoto , Deleção de Sequência , Peroxidação de Lipídeos , Homeostase , Neoplasias/genética , Neoplasias/terapia , Imunoterapia
2.
Math Biosci Eng ; 21(2): 2671-2690, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38454701

RESUMO

Methods based on deep learning have shown good advantages in skin lesion recognition. However, the diversity of lesion shapes and the influence of noise disturbances such as hair, bubbles, and markers leads to large intra-class differences and small inter-class similarities, which existing methods have not yet effectively resolved. In addition, most existing methods enhance the performance of skin lesion recognition by improving deep learning models without considering the guidance of medical knowledge of skin lesions. In this paper, we innovatively construct feature associations between different lesions using medical knowledge, and design a medical domain knowledge loss function (MDKLoss) based on these associations. By expanding the gap between samples of various lesion categories, MDKLoss enhances the capacity of deep learning models to differentiate between different lesions and consequently boosts classification performance. Extensive experiments on ISIC2018 and ISIC2019 datasets show that the proposed method achieves a maximum of 91.6% and 87.6% accuracy. Furthermore, compared with existing state-of-the-art loss functions, the proposed method demonstrates its effectiveness, universality, and superiority.

3.
Cancer Lett ; 588: 216726, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38401888

RESUMO

Harnessing the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis is pivotal in autoimmunity and cancer immunotherapy. PD-1 receptors on immune cells engage with one of its ligands, PD-L1 or PD-L2, expressed on antigen-presenting cells or tumor cells, driving T-cell dysfunction and tumor immune escape. Thus, targeting PD-1/PD-L1 revitalizes cytotoxic T cells for cancer elimination. However, a majority of cancer patients don't respond to PD-1/PD-L1 blockade, and the underlying mechanisms remain partially understood. Recent studies have revealed that PD-1 expression levels or modifications impact the effectiveness of anti-PD-1/PD-L1 treatments. Therefore, understanding the molecular mechanisms governing PD-1 expression and modifications is crucial for innovating therapeutic strategies to enhance the efficacy of PD-1/PD-L1 inhibition. This article presents a comprehensive overview of advancements in PD-1 regulation and highlights their potential in modulating immune homeostasis and cancer immunotherapy, aiming to refine clinical outcomes.


Assuntos
Antígeno B7-H1 , Neoplasias , Humanos , Receptor de Morte Celular Programada 1/metabolismo , Neoplasias/terapia , Imunoterapia , Homeostase
4.
Mol Cell ; 84(6): 1120-1138.e8, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38377992

RESUMO

UFMylation is an emerging ubiquitin-like post-translational modification that regulates various biological processes. Dysregulation of the UFMylation pathway leads to human diseases, including cancers. However, the physiological role of UFMylation in T cells remains unclear. Here, we report that mice with conditional knockout (cKO) Ufl1, a UFMylation E3 ligase, in T cells exhibit effective tumor control. Single-cell RNA sequencing analysis shows that tumor-infiltrating cytotoxic CD8+ T cells are increased in Ufl1 cKO mice. Mechanistically, UFL1 promotes PD-1 UFMylation to antagonize PD-1 ubiquitination and degradation. Furthermore, AMPK phosphorylates UFL1 at Thr536, disrupting PD-1 UFMylation to trigger its degradation. Of note, UFL1 ablation in T cells reduces PD-1 UFMylation, subsequently destabilizing PD-1 and enhancing CD8+ T cell activation. Thus, Ufl1 cKO mice bearing tumors have a better response to anti-CTLA-4 immunotherapy. Collectively, our findings uncover a crucial role of UFMylation in T cells and highlight UFL1 as a potential target for cancer treatment.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/metabolismo , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
5.
Cell Chem Biol ; 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37751743

RESUMO

The tumor microenvironment (TME) is a heterogeneous ecosystem containing cancer cells, immune cells, stromal cells, cytokines, and chemokines which together govern tumor progression and response to immunotherapies. Methyltransferase-like 3 (METTL3), a core catalytic subunit for RNA N6-methyladenosine (m6A) modification, plays a crucial role in regulating various physiological and pathological processes. Whether and how METTL3 regulates the TME and anti-tumor immunity in non-small-cell lung cancer (NSCLC) remain poorly understood. Here, we report that METTL3 elevates expression of pro-tumorigenic chemokines including CXCL1, CXCL5, and CCL20, and destabilizes PD-L1 mRNA in an m6A-dependent manner, thereby shaping a non-inflamed TME. Thus, inhibiting METTL3 reprograms a more inflamed TME that renders anti-PD-1 therapy more effective in several murine lung tumor models. Clinically, NSCLC patients who exhibit low-METTL3 expression have a better prognosis when receiving anti-PD-1 therapy. Collectively, our study highlights targeting METTL3 as a promising strategy to improve immunotherapy in NSCLC patients.

6.
Nat Commun ; 14(1): 2859, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208329

RESUMO

The programmed cell death protein 1 (PD-1) is an inhibitory receptor on T cells and plays an important role in promoting cancer immune evasion. While ubiquitin E3 ligases regulating PD-1 stability have been reported, deubiquitinases governing PD-1 homeostasis to modulate tumor immunotherapy remain unknown. Here, we identify the ubiquitin-specific protease 5 (USP5) as a bona fide deubiquitinase for PD-1. Mechanistically, USP5 interacts with PD-1, leading to deubiquitination and stabilization of PD-1. Moreover, extracellular signal-regulated kinase (ERK) phosphorylates PD-1 at Thr234 and promotes PD-1 interaction with USP5. Conditional knockout of Usp5 in T cells increases the production of effector cytokines and retards tumor growth in mice. USP5 inhibition in combination with Trametinib or anti-CTLA-4 has an additive effect on suppressing tumor growth in mice. Together, this study describes a molecular mechanism of ERK/USP5-mediated regulation of PD-1 and identifies potential combinatorial therapeutic strategies for enhancing anti-tumor efficacy.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Receptor de Morte Celular Programada 1 , Animais , Camundongos , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Homeostase , Imunoterapia
7.
Nat Commun ; 13(1): 1700, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361799

RESUMO

Anti-PD-1/PD-L1 immunotherapy has achieved impressive therapeutic outcomes in patients with multiple cancer types. However, the underlined molecular mechanism(s) for moderate response rate (15-25%) or resistance to PD-1/PD-L1 blockade remains not completely understood. Here, we report that inhibiting the deubiquitinase, USP8, significantly enhances the efficacy of anti-PD-1/PD-L1 immunotherapy through reshaping an inflamed tumor microenvironment (TME). Mechanistically, USP8 inhibition increases PD-L1 protein abundance through elevating the TRAF6-mediated K63-linked ubiquitination of PD-L1 to antagonize K48-linked ubiquitination and degradation of PD-L1. In addition, USP8 inhibition also triggers innate immune response and MHC-I expression largely through activating the NF-κB signaling. Based on these mechanisms, USP8 inhibitor combination with PD-1/PD-L1 blockade significantly activates the infiltrated CD8+ T cells to suppress tumor growth and improves the survival benefit in several murine tumor models. Thus, our study reveals a potential combined therapeutic strategy to utilize a USP8 inhibitor and PD-1/PD-L1 blockade for enhancing anti-tumor efficacy.


Assuntos
Endopeptidases , Complexos Endossomais de Distribuição Requeridos para Transporte , Imunoterapia , Neoplasias , Microambiente Tumoral , Ubiquitina Tiolesterase , Animais , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Endopeptidases/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/genética
8.
Photodiagnosis Photodyn Ther ; 27: 268-275, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31185325

RESUMO

Hemoporfin (hematoporphyrin monomethyl ether, HMME) is a relatively new photosensitizer that has achieved success in mediating photodynamic therapy (PDT) of port wine stains in China. However, the exact mechanism of Hemoporfin PDT on endothelial cell proliferation and apoptosis is unclear. The present study investigated the mechanism of action of HMME-PDT on endothelial cells in vitro. Human umbilical vein endothelial cells (HUVECs) were cultured in vitro. HMME-PDT treated the cells and detected the phototoxicity by cell counting kit-8 (CCK-8) assay, apoptosis by Flow cytometry assay and quantification of the secreted VEGF-A levels using ELISA and different proteins expression by quantitative real-time PCR and Western blotting. Phototoxicity was caused in an HMME and light dose-dependent manner. Apoptosis was induced as shown by Annexin-V/propidium iodide staining and morphological changes. The Bax/Bcl-2 ratio was increased as shown by Western blot for protein and RT-qPCR for mRNA. VEGF-A expression was reduced and signaling molecules in the Akt/mTOR pathway were inhibited as shown by ELISA and immunofluorescence. Hemoporfin (hematoporphyrin monomethyl ether, HMME) has achieved success in mediating photodynamic therapy (PDT) of port wine stains. The clinical success of HMME-PDT with low recurrence rates can be explained by inhibition of endothelial cell proliferation through VEGF/Akt /mTOR pathway.


Assuntos
Hematoporfirinas/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Mancha Vinho do Porto/tratamento farmacológico , Apoptose/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Genes bcl-2/efeitos dos fármacos , Gliceraldeído-3-Fosfato Desidrogenase (Fosforiladora)/efeitos dos fármacos , Humanos , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Proteína X Associada a bcl-2/efeitos dos fármacos
9.
Oncol Lett ; 14(2): 2499-2504, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28781688

RESUMO

Gastric cancer is the third most frequent cause of cancer-associated mortality and almost all patients who respond initially to cisplatin (DDP) later develop drug resistance, indicating multi-drug resistance (MDR) is an essential aspect of the failure of treatment. The natural diterpenoid component Oridonin (Ori) has exhibited efficient inhibition in several types of human cancer. However, the effect and potential mechanism of Ori-reversed MDR in human gastric cancer has not been fully elucidated. In the present study, it was found that Ori significantly suppressed DDP-resistant human SGC7901/DDP cell proliferation, growth and colony formation, causing increased caspase-dependent apoptosis, decreased expression of P-glycoprotein (P-gp), encoded by the MDR gene, multi-drug resistance-associated protein (MRP1), and cyclin D1. SGC7901/DDP cells were cultured with different groups of drugs (Ori, DDP alone, or the combination of Ori and DDP). The drug sensitivity, cell apoptosis and effects on MDR were detected by MTT assay and western blot analysis. The results revealed that Ori is able to reverse the DDP resistance and has a clear synergistic effect with DDP in SGC7901/DDP cells by decreasing the levels of P-gp, MRP1, cyclin D1 and cancerous inhibitor of protein phosphatase 2A. Thus, Ori may be a novel effective candidate to treat DDP-resistant human gastric cancer cells.

10.
Oncol Rep ; 36(2): 1180-6, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27350399

RESUMO

Cancerous inhibitor of protein phosphatase 2A (CIP2A) is a human oncoprotein that is overexpressed in various tumors. A previous study found that CIP2A expression is associated with doxorubicin (Dox) resistance. In the present study, we investigated whether cucurbitacin B (CuB), a natural anticancer compound found in Cucurbitaceae, reversed multidrug resistance (MDR) and downregulated CIP2A expression in MCF-7/Adriamycin (MCF-7/Adr) cells, a human breast multidrug-resistant cancer cell line. CuB treatment significantly suppressed MCF-7/Adr cell proliferation, and reversed Dox resistance. CuB treatment also induced caspase-dependent apoptosis, decreased phosphorylation of Akt (pAkt). The suppression of pAkt was mediated through CuB-induced activation of protein phosphatase 2A (PP2A). Furthermore, CuB activated PP2A through the suppression of CIP2A. Silencing CIP2A enhanced CuB-induced growth inhibition, apoptosis and MDR inhibition in MCF-7/Adr cells. In conclusion, we found that enhancement of PP2A activity by inhibition of CIP2A promotes the reversal of MDR induced by CuB.


Assuntos
Autoantígenos/metabolismo , Doxorrubicina/farmacologia , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Proteína Fosfatase 2/metabolismo , Triterpenos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Caspases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cucurbitaceae/química , Regulação para Baixo/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células MCF-7 , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
Int J Oncol ; 48(6): 2608-18, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27082429

RESUMO

Oridonin (Ori), a diterpenoid compound extracted from traditional medicinal herbs, elicits antitumor effects on many cancer types. However, whether Ori can be used in gefitinib-resistant non-small cell lung cancer (NSCLC) cells remains unclear. This study investigated the antitumor activity and underlying mechanisms of Ori. Results demonstrated that this compound dose-dependently inhibited the proliferation, invasion, and migration of the gefitinib-resistant NSCLC cells in vitro. Ori also significantly downregulated the phosphorylation of EGFR, ERK, Akt, expression levels of matrix metalloproteinase-12 (MMP-12), and the cancerous inhibitor of protein phosphatase 2A (CIP2A). In addition, Ori upregulated protein phosphatase 2A (PP2A) activity of gefitinib-resistant NSCLC cells. Ori combined with docetaxel synergistically inhibited these cells. Ori also inhibited tumor growth in murine models. Immunohistochemistry results further revealed that Ori downregulated phospho-EGFR, MMP-12, and CIP2A in vivo. These findings indicated that Ori can inhibit the proliferation, invasion, and migration of gefitinib-resistant NSCLC cells by suppressing EGFR/ERK/MMP-12 and CIP2A/PP2A/Akt signaling pathways. Thus, Ori may be a novel effective candidate to treat gefitinib-resistant NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Diterpenos do Tipo Caurano/administração & dosagem , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Quinazolinas/administração & dosagem , Células A549 , Animais , Autoantígenos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diterpenos do Tipo Caurano/farmacologia , Relação Dose-Resposta a Droga , Receptores ErbB/metabolismo , Gefitinibe , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 12 da Matriz/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Fosforilação/efeitos dos fármacos , Quinazolinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Zhongguo Yi Liao Qi Xie Za Zhi ; 26(4): 281-3, 280, 2002 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-16104286

RESUMO

It has been a long time since ultrasound hyperthermia began to be used in the clinical management of cancers and benign diseases. Numerous biological and clinical investigations have demonstrated that: hyperthermia in the range of 41-45 degrees C can significantly enhance clinical response to radiation therapy and chemotherapy, and high-temperature hyperthermia (greater than 65 degrees C) alone is now being used as an alternative to conventional invasive surgery for selective tissue destruction, causing tumor coagulation and necrosis. As a promising noninvasive and effective local therapy, HIFU has attracted great attention. China is advanced in the clinical applications of HIFU. This article gives an introduction of the development and applications of ultrasound hyperthermia technology, and also provides a general review of a selection of ultrasound hyperthermia systems both in clinical use and under development.


Assuntos
Hipertermia Induzida/instrumentação , Ultrassom , Desenho de Equipamento , Humanos , Hipertermia Induzida/métodos , Neoplasias/terapia , Ultrassom Focalizado Transretal de Alta Intensidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...